
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

On-Line Detection of Distributed Attacks from Space-Time
Network Flow Patterns

by J.S. Baras, A.A. Cardenas, V.Ramezani

TR 2003-2

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2003 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
On-Line Detection of Distributed Attacks from Space-Time Network
Flow Patterns

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Army Research Office,PO Box 12211,Research Triangle Park,NC,27709

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ON-LINE DETECTION OF DISTRIBUTED ATTACKS
FROM SPACE-TIME NETWORK FLOW PATTERNS

J.S. Baras*, A.A. Cardenas, V. Ramezani
Electrical and Computer Engineering Department

and the Institute for Systems Research
University of Maryland

College Park, MD, 20742

ABSTRACT

Parametric and non-parametric change detection
algorithms are applied to the problem of detecting
changes in the direction of traffic flow. The directionality
of the change in a network flow is assumed to have an
objective or target. The particular problem of detecting
distributed denial of service attacks from distributed
observations is presented as a working framework. The
performance of our change detection algorithms is
evaluated via simulations.

1. INTRODUCTION

We are interested in detecting and classifying

anomalous changes in the behavior of a network caused
from distributed sources of the disturbance, including
maliciously planned attacks with goal the disruption of
the network. More specifically we are interested in
detecting changes in the network flow, identifying
abnormal changes, and extracting the characteristics of
the changes, as soon as possible. Examples include the
spreading of active worms through web servers, email
viruses and distributed denial of service attacks.

Networks of interest include communication

networks as well as sensor networks. We are principally
interested in developing efficient and high performance
algorithms for these problems while utilizing only passive
monitoring of the time histories of network flows and
other key network parameters at a small subset of nodes.
In particular we consider a subset of highly connected
nodes from where we can infer properties about the
network state. Detecting a problem such as an attack or
intrusion early in its development or spreading, before it
has reached its full force can help in the assignment of
resources to guarantee a reliable operation or in executing
a rapid response to contain or nullify an attack. For
example a denial of service attack becomes apparent in its
final phase by observing the traffic flow in the network.
We are interested in the “quickest detection” problem
when the attack is distributed and coordinated from
several nodes against a targeted node.

We investigate first the problem of a spreading

congestion attack that incrementally compromises nodes.

The behavior pattern as observed by different nodes in the
network will be different from a panic mode (flash
crowd). This problem is investigated as a step towards
analyzing more complex distributed attacks.

A typical distributed denial of service attack involves

sending a large number of packets from multiple sources
to a single destination causing excessive amounts of
endpoint, and possibly transit network bandwidth to be
consumed. (Houle and Weaver, 2001). Our goal is to
detect when a distributed denial of service is taking place
in one sub-network of a transit (core) network comprised
only on routers. We are assuming the transit network
itself is not the target of the attack, but it is being used by
the attack to reach the victim.

Various techniques have been proposed for

mitigation of denial of service attacks that require the
identification of the routers participating (involuntarily) in
the attack. Most of these techniques consume a significant
amount of router resources so it is advisable to use them
only when needed. Some examples provided in some
Cisco Routers are TCP Intercept and “Committed Access
Rate.” Some related work is also presented in (Bohacek,
2002) where the key step in the proposed denial of service
mitigation algorithm consists in identifying the routers
forwarding the malicious traffic.

We are addressing this monitoring and detection of
abnormal behavior problem as a space-time inference
problem. That is we look at the collection of the time
histories at the sensing nodes together and not in isolation.
This set of time histories constitutes our “monitoring
data” or observations. We consider parametric and non-
parametric models for the monitored statistics. The
connectivity, logical and physical, of the nodes and the
topology of the network influence the time history of the
observations, and consequently the form of the algorithm
and its properties. We provide a novel formulation of the
problem as sequential space-time change detection on a
graph. The mathematical techniques we use for detecting
an attack are thus based on change detection theory. In a
distributed environment a small change in local nodes can
be correlated with the state at different nodes to provide a
global view and early warning about the state of the

network. Distributed change detection problems on
graphs are a novel formulation and problem.

More specifically for the denial of service attack

problem, we use a “directionality” framework, which
gives us a way to compute the severity and directionality
of the change. The “severity” represents a composite
hypothesis test that can be solved explicitly when the data
are Gaussian. We also introduce a heuristic distributed
change detection mechanism for “correlating” the alarms
in a subset of monitored nodes. Given an alarm as a pair
(direction and severity) we correlate the severity of the
alarms with alarms from other nodes in the “same
direction.”

Finally we are investigating the effects of mobility on
the solution to these problems. Mobility creates changing
topology of the underlying network and of the associated
graph. The resulting problems are treated in the
framework of dynamic space-time inferencing based on
dynamic graph models.

2. DETECTION OF SELF-PROPAGATING CODE

We have investigated the problem of detecting self-

propagating code (worms) spreading over a network.
Most active worms spreading over the Internet
compromised hosts in a random way. For example Code
Red spread by launching 99 threads that generated
random IP addresses. The worm itself is normally small
(Code Red I was about 4KB) and it only takes 40 bytes
for a TCP SYN packet to determine if a service is
accessible. So in order to detect self-propagating code we
should add semantic information, which might vary
depending on the worm (Nimda used several ways to
spread itself). The most general-purpose information we
might need is the number of TCP SYN packets seen. A
distributed observation of a rise in TCP SYN packets (or a
rise in the rate of change in the arrival of these packets) in
several nodes of the network might indicate the presence
of a worm scanning IP addresses for vulnerable hosts. The
use of host unreachable messages and connection
attempts to routers as a way of detecting worms will be
less reliable while the worm is “getting off the ground” if
it uses a hit-list scanning (Staniford et al. 2002.) The
observations can be made at different participating ISPs
enforcing policies for blocking self-propagating code
once it is detected.

Our overall goal is to develop automated mechanisms

for detecting worms based on their spread traffic patterns
from widespread sensors (later attacks). In analyzing the
associated segmentation of flows in complex networks,
past research has revealed that the connectivity of the
network influences the properties of spreading
mechanisms for various types of attacks. In this context

the behavior of different types of networks has been
investigated (at least on a preliminary basis): random
graphs, small-world networks (small path length,
unusually large clustering coefficient), scale-free
networks. For example it is now well known that the
Internet router topology has a heavy tail distribution,
which manifests in a core connected group and a
statistically significant number of low degree nodes (a so
called scale-free network) (Albert and Barabasi, 2002.)

Various classes of random graphs/networks have
recently attracted attention in relation to various dynamic
properties of the Internet and other networks. These
include the Erdös-Rényi “random graph” model,, wwhheerree
oonnee starts with N nodes and connects every pair of nodes
with probability p, ending up with a graph with
approximately pN(N-1)/2 edges distributed randomly, and
with tthhee ttypical distance between two nodes scaling as
log(N). In such a network clusters of “like” or “close”
nodes form. A key parameter in the analysis and
discrimination between graphs is the clustering coefficient
of a node i. CCoonnssiiddeerr aa nnode i with ki edges connecting it
to ki other nodes. If nearest neighbors were part of the
cluster there will be ki(ki-1)/2 edges between them. The
clustering coefficient of the network at node i is the rratio
between edges that actually exist between these ki nodes,
Ei, and the total number . The
network clustering coefficient is the average of the Ci.

It turns out that the clustering coefficients, and more
importantly their variations, are very useful in classifying
different types of networks. In a random graph C = p,
while in real networks C is much larger than in a
comparable random graph. Another important parameter
in the description of a network is the node degree, i.e. the
number of edges emanating from a node in a graph. The
important discriminant is the degree distribution:
Pr[a randomly selected node has exactly k edges] = P(k).
In a random graph the majority of nodes have
approximately the same degree close to the average
degree of the network kav, and the degree distribution is
Poisson with peak P(kav). On the other hand in most real
large networks degree distribution deviates significantly

from Poisson: it has a power law tail P(k) � k - (scale-

free networks). Current research in dynamics of complex
networks tries to identify basic dynamic interactions to
explain these characteristics.

Recent studies have revealed on a preliminary basis,
that graph topology, and in particular its classification
from the perspectives of clustering coefficients and
degree distribution, is intimately related to the robustness
of the network when there is failure or attack. A key
question is: “what happens to average path length
between two nodes when the network fails (i.e. nodes are
disabled at random) vs when the network is under attack
(i.e. nodes with highest degree are disabled first). It turns

2 /((1))i i i iC E k k= −

out that there are strong indications that scale free
networks are very robust to random failures but
susceptible to targeted attacks, while ad hoc networks are
very robust to targeted attacks.

Figure 1 below, illustrates a typical scale-free
network. As can easily be seen in such a model there is a
set of subnetworks connected through a much smaller
subset of key nodes (routers). In such a network the
distribution of the node degree is heavy tailed, meaning
that there is higher than typical chance that there are some
nodes with many edges connected to them. Such nodes
help spread attacks rapidly and are themselves primary
targets of attacks. The network of Internet routers and the
WWW are well known examples of such networks.

Figure1: The synthetic experimental network

The analysis of active worm spreading on graphs,

provides a first step towards the analysis of spreading of
more sophisticated attacks in a network. Fast spreading
Internet worms (active worms) do not resemble traditional
models of epidemic spreading on a graph. Traditional
epidemic spreading on graphs considered nodes infecting
only their neighbors. On the other hand in the Internet
router graph the spread of active worms (Code Red,
Nimda) is not limited to diffusion schemes due to the
utilization of random scanning of nodes whose path
length is in general greater than one. We have
investigated experimentally the spreading of active worms
using random scanning in a synthetic network. The time
(number of hops) it takes to infect all the nodes is longer
in regular lattices than in small world or random graphs.
Naïve change detection would use a Poisson process for
the beginning of connections and a sudden increase (in
measured traffic rate) would create an alarm. Aggregation
(fusion) of different sensors (located at different nodes)
would prevent false alarms but would delay detection.

The synthetic network that we experimented with is

shown in Figure 1; it has 100 nodes. It appears to have 4
autonomous systems (AS). The gateways are high degree
nodes (important nodes). Gateways for AS 1 are nodes 32

and 21. Gateways for AS 2 are nodes 24, 67. Gateways
for AS 3 are nodes 22, 44. Gateways for AS 4 are nodes
71, 33, 23. The node degree distributions, in this network,
for the core cluster and for the “AS” networks are heavy
tailed. The average path length of this network is 4.3.

We provide next a brief description of some of the
experimental details in our investigations. Each node can
act as a source or a sink. The flows of the network consist
of “requests” in analogy to the “TCP-SYN” packets
required for initiating a connection. The capacity of the
links is infinite. The cost (in time) for a “request” to go
through each link is of one time-step.

Under normal mode each node has a waiting time for

initiating connections, which is modeled as either a Pareto
or Exponential distribution. In either case the mean was
set to two times the average path length in the network
(round trip time (RTT)). A “Panic mode” simulates the
situation where ¼ of the nodes in the network will attempt
to contact at times t = 50 + G,..., t = 50 + 5 + G (where G
is a random variable with Gamma distribution and
parameters g = 2, t = 2) one of the nodes that are being
monitored (node #6). Under an anomaly mode, an
infection is modeled similar to the spread of Code Red I
over the Internet, (we are considering vulnerable nodes).
The attack starts with a single node infected at time t =
150. Once infected, a node spreads the self-propagating
code by launching a specified number of threads, which
generate random node numbers and then tries to contact
them. Each thread waits for the round trip time after
sending a request to the target before trying to contact any
other node.

In figures 2- 4 below we present some representative

samples of our investigations to date.

Figure 2: Flows when each infected node runs 3 threads

In the experimental network of Figure 1 we monitor

the number of “TCP-SYN” packets going through 10
nodes with the highest degree (number of links). Nodes

21,22,23,24 and 33 are Gateways. The other nodes belong
to the highly connected cluster in between the AS’s. The
surge of traffic flows at times immediately after the
initiation of the spreading attack are quite obvious.

Figure 3: Infection time per node when the self-
propagating code runs three threads

The basic problem formulation for automated change

detection algorithms is as follows: Given the observed
data from one or more nodes decide as fast as possible if a
spreading attack is taking place. A more complicated
problem is the combined detection/classification problem:
Given several possible models or hypotheses that may
have generated the observed data at one or more nodes
decide as fast as possible if a spreading attack is taking
place and the type of the attack. The methodologies we
are using to analyze these problems proceed along two
main ideas: developing generalized likelihood ratio
(GLR) approach for on-line algorithms; developing filter
bank algorithms (using HMMs). We are also investigating
the development of robust non-parametric algorithms
using cumulative sum (CUSUM) and Girshik-Rubin-
Shiryaev (GRSh) statistics. In sequential versions of the
problem the sequential probability ratio test (SPRT) is
used.

Figure 4: Preliminary picture showing the detection of
the worm early in its development.

Change detection and quickest detection is a subject
that has been investigated intensively through the years
due to its wide applicability. We refer to the excellent
references (Basseville and Nikiforov, 1993) (Shiryaev,
1978). Most of the algorithms and work to date have used
i.i.d. observations. Performance of such an algorithm is
shown in Figure 4 below.

3. CHANGE DETECTION IN A
NETWORK FLOW PATTERN

3.1 Problem formulation

Most change detection algorithms applied to network
traffic use non-parametric statistics as it is very

complicated to know, or model the pre-change 0P and the

post-change 1P distributions of an observation of the

network flow at all times by parametric families (Blâzek
et al., 2001;Wang et al. 2002.)

One such non-parametric sequential method to detect

changes in the mean that we will be looking at is given by
a threshold of the statistic:

{ }1max 0,k k k k kS S N m c−= + − − (1)

where kN can represent for example the number of

packets seen in an interval of time tt k∆ = , km is a

historical estimate of 0[]kE N and kc is a positive

deterministic sequence chosen experimentally to
minimize the average detection delay. The stopping time
is then

 min{ : }kk S hτ = ≥ (2)

where h is the given threshold.

We take a new approach for identifying Distributed

Denial of Service (DDoS) attacks by a set of nodes in a
transit network. The basic idea is that at each highly
connected node, the data tends to aggregate from the
distributed sources towards the destination, giving a sense
of “directionality” to the attack. This directionality
concept provides us a framework to design change
detection algorithms that are going to be less sensitive to
changes in the average intensity of the overall traffic and
will focus in differentiating the different random
fluctuations of the network traffic versus fluctuations
where there is a clear change in the direction of the flow
at a given node. We are considering “packets” in a very
broad and general way, but clearly our approach can be
extended to monitor certain specific packet types given
the right protocol. For example we might be interested in
measuring only TCP SYN-ACK response packets for
identifying a “reflected distributed denial of service
attack”, or ICMP packets for identifying ping floods.

0 20 40 60 80 100 120
0

50

100

150

200
Time of infection

node number

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

nu
m

be
r o

f i
nf

ec
te

d
no

de
s

time

Let’s assume we are monitoring node d in Figure 5.

Let ,d m
kX denote the total number of packets sent by d

through the link (d,m), where ()m N d∈ denotes a

neighbor of d, N(d). Let d
kX denote the vector with

elements ,d m
kX and let

,
0

,
0 0

,
0

[]

() : []

[]

d a
k

d d b
k

d c
k

E X

k E X

E X

θ

 =

We are interested in changes of the form:
,

0
,

0 0
,

0

[]

() : []

[]

d a
k

d d b
k
d c
k

E X

k v E X v

E X

θ

 + ϒ = + ϒ

 (3)

where v is a non-negative scalar and ϒ (in the case of
three observed links) is one of the usual basis vectors of
the three dimensional Euclidean space. Namely:

1 0 0

0 , 1 , 0

0 0 1
a b c

 ϒ = ϒ = ϒ =

So in Figure 5, if node d suddenly starts a broadcast,

there will be a change in the mean of all the processes, but
we are not interested in such a change. Instead, if there
are attackers in the sub networks attached to b and c, and
they target a host in the network attached to a by flooding

it, there will be a change in the direction aϒ . Testing

“directions” should help us discriminate unwanted false
alarms due random fluctuations of flows.

Figure 5: Transit network composed of nodes a, b, c, d.
We monitor all outgoing links of node d.

To formalize our ideas we consider the framework
discussed in (Basseville and Nikiforov, 1993) of change
detection in a known direction but unknown magnitude of
the change. Our problem is a little bit different in that we
are considering an M-ary sequential hypothesis testing
problem and in that we not allow changes with negative
values for v , i.e. we impose the restriction 0v ≥

Thus the resulting change detection problem is:

0

0

0

0

()

d
change

d
d a

d
b

d
changec

k twhen

orv
k

orv

k twhenv

θ
θθ
θ
θ

<
 + ϒ= + ϒ
 ≥+ ϒ

 (4)

where changet is an unknown time when the change occurs.

We run in parallel a GLR in each possible direction mϒ

(m a neighbor of d) vs the null hypothesis assuming 0
dθ :

 0

0

0
,

1

s u p ()

m a x ln
()

d
m

d

k
d

v kv
i jd m

k kj k d
k

i j

p X

g
p X

θ

θ

≥ + ϒ
=

≤ ≤

=

=
∏

∏

 (5)

Only the test m that reaches its given threshold is stopped.

The threshold ,d mh for each of the parallel tests is
selected given a fixed false alarm rate probability.

Equation (5) has a closed form solution when the

distributions are assumed to be Gaussian ()0 ,d
dθ Σ� . In

this case we get the constrained optimization problem:

() ()1
0 0

0

1
m in

2

Tk
d d d d
i m d i m

v
i j

X v X vθ θ−

≥ =

− − ϒ Σ − − ϒ∑ (6)

If the restriction is inactive (0λ =), then we obtain

1
0

,

1

1
1

()

kT d d
m d ii jd m

k T
m d m

X
k j

v j

θ−
=

−

ϒ Σ − − + =

ϒ Σ ϒ

∑
� (7)

If the restriction is active, then () 0
m

kv j =�

Intuitively we are projecting the difference between

all available sample means and the mean 0
dθ into each of

the possible directions mϒ , selecting the time step that

maximizes the likelihood of the alternate hypothesis

assuming
,

0 ()
d md
k mv jθ + ϒ� , i.e. when we “think” the

sample mean started moving in the mϒ direction. The

uncorrelated covariance (in our case) is just a weighting
parameter for being cautious about declaring a change in
the mean too soon if the process is observed to have large
fluctuations around the mean.

We tested the robustness of this approach even when

the distribution is not Gaussian, as long as we are
computing the mean and covariance in a window of time,
much larger than our false alarm delay, to keep mean and
covariance “up to date”. Although the number of packets
through a link does not follow a Gaussian distribution, the
analysis is still valid based on second order statistics of
the flows. The mean and the variance are easily learned
and the model is used to provide an approximate picture

of changes in direction of the flow. We are primarily
concerned here about changes in the direction of the flow
and not its intensity per se.

We also use the non-parametric test ,d m
kS given by

equation (1) to test for changes in the mean of the
utilization of the link (d,m) in the time interval k. Note
that one main difference is that for testing a change in the

link m, ,d m
kS does not use information from the other

links of node d whereas ,d m
kg does. A possible use of the

information contained in all the links from d is to compute
a non-parametric statistic that measures the changes in the
normalized traffic seen through a link (d,m):

,

,
,

()

:
d m

d m k
k d m

k
m N d

X

X
ρ

∈

=
∑

 (8)

This approach has the added advantage that a positive

change in the mean of ,d m
kρ tends to yield a negative

change in the mean on any other neighbor n of d as
,d m

kρ and ,d n
kρ are negatively correlated because:

,

()

1d m
k

m N d

ρ
∈

=∑

Experimental validation shows that the process ,d m
kρ has

fewer variations than its unormalized counterpart and will
be more amenable to a mean computation and the usage
of the non-parametric statistic (1).

3.2 Correlation mechanism

So far we have been focusing on detecting a change

in a single node. One of the main advantages in having
several nodes under monitoring is that we can perform a
correlation of the statistics between the different nodes in
order to decrease the detection delay given a fixed false
alarm rate probability. The alarm correlation can be
performed by several methods. Here we propose a simple
algorithm that will only require the knowledge of the
routing tables for the nodes being monitored.

We want a mechanism to aggregate the different

statistics at each monitored node. Clearly the correlation
mechanism cannot be multiplicative, because if we are
monitoring a node physically unable to detect the attack
(a node that is not in the routing path of any of the
attackers and the victim) the low value of the computed
statistic of this node will adversely affect any small
information that any other node might have related to the

attack. On the other hand the computed statistics kg for

all nodes can vary to different scales of magnitude
yielding a biased addition. To cope with this problem we
compute the normalized statistic

,

,
,

:
d m

d m k
k d m

g

h
ϕ = (9)

If none of our monitored nodes has raised an alarm, the
number of monitored nodes will bound ,d m

k
d

ϕ∑ . This

can be in turn interpreted as a new upper bound for a
“collective” threshold and can be selected given a false
alarm rate probability. Selecting which statistics to
correlate (add) is a key issue. In keeping with our
“directionality” framework we will correlate only the
statistics relating two or more nodes to a common node.
That is the reason we need the routing table information
of our monitored nodes.

The algorithm is as follows:

Given two nodes d and e,
For each link d->m in d{
 For each link e->n in e{

If there is a node f
reachable through the
routing tables of d->m and
e->n, then correlate the
normalized statistic of
d->m with the statistic of
e->n

 }
}

In the following section we apply this formulation for
the case of two nodes, but it can be extended recursively
when we are monitoring three or more nodes.

4. SIMULATION RESULTS AND EVALUATION

For our experimental results we used the network

simulation software ns2. We created a script to generate a
random scale-free transit network topology with a given
number of sub networks. We will focus in one of our
realizations given in Figure 6. It consists of 15 transit
nodes performing only routing between 12 subnetworks,
each with 65 hosts each. During the normal operation of
the network each of these 780 hosts selects randomly a
host in another sub network, and establishes an On-Off
source connection with Pareto distributed times. The
routing protocol selects a route with the least number of
hops towards a given destination.

The attack is simulated with a given number of

compromised nodes in different sub networks. During the
attack, each of these nodes will start a constant bit rate
connection towards a specific node. The rate of the
attackers was varied to test the detection algorithm with
different percentage of attack packets circulating over the
transit network at a given time. We considered 7
attackers. One in each of the sub networks connected to
nodes 3, 4, 5, 8, 9, 11 and 13. The victim is in the
network connected to node 14.

Figure 6: The transit network consists of 15 routers Each

“cloud” represents a subnetwork

Some typical link usage characteristics can be seen in
Figure 7. We first tested the performance of the statistics

,d m
kS and ,d m

kg at individual nodes. With the network

under normal operation we experimentally obtained the
thresholds for each statistic for a false alarm rate of 0.003.

Figure 7: Node 6 uses node 0 to reach 14. An attack
 occupying 2.5% percent of the transit network
 traffic was started at k = 350.

Figure 8: Average detection delay per node when we
 monitor nodes 0, 1, 2, 7. Detection delay of 1 is
 same as the average delay for a false alarm.

We selected the nodes 0, 1, 2, 7 to test the detection
delay of the statistics independently of each other. The

results can be seen in Figure 8, where the average delay of
detection is computed between the four nodes for
different percentages of the amount of traffic the attack
generates over the transit network. Node 0 had the
smallest delay, as it is a node where most of the traffic
towards 14 gets agglomerated, giving a large change in

the mean. ,d m
kg performs marginally better than ,d m

kS .

The correlation mechanism can be applied to

decrease the detection delay when we are monitoring
more than one node. Lets consider the case of two nodes
far (in the number of hops) from the victim. In Figure 6
we will pick nodes 6 and 3 for the correlation.
Furthermore if we consider an attack reaching less than
2% of the transit network traffic it will be very difficult to
detect any abnormal change without a global integrated
view of the statistics at different nodes. For testing our
correlation algorithm we will start at k = 1 an attack
reaching 1.5% of all traffic at the transit network. Again
the attack is towards a host in the sub network of node 14.

The normalized statistics are computed for each link

in the nodes. Figure 9 shows the normalized statistics for
node 6. The routing tables required for the correlation
algorithm are in Tables 1, 2.

TABLE 1: ROUTING TABLE FOR NODE 6

Link Routing to nodes:
(6,7) 7,13,2,10,12,9
(6,0) 0,14,1
(6,4) 4,3,5

(6,11) 11,3
(6,8) 8

(6,sub network)

TABLE 2: ROUTING TABLE FOR NODE 3

Link Routing to nodes:
(3,1) 1,0,2,14,10,9,12

(3,13) 7,13
(3,4) 4,5

(3,11) 11,6,8
(3,sub network)

By simple inspection of the routing tables we see that

we need to correlate link (6,0) with (3,1) because nodes 6
and 3 use them to reach nodes 0, 1 and 14. Similarly, the
link (6,11) must be correlated with (3,11), link (6,4) with
(3,4), link (6,7) with (3,13), and (6,7) with (3,1).

The results of our correlation between all allowable

normalized statistics are shown in Figure 10. It is clear
that the correlation of the normalized statistics at nodes 6
and 3 gives a better resolution of the attack than the
statistics of 6 and 3 alone while discriminating the

uncorrelated random fluctuations of the traffic intensity
that cause most of the false alarms.

Figure 9: All normalized statistics for node 6. Solid dark
curve is the normalized statistic for link (6,0).
Circles identify the statistic from 6 to its sub
net. This statistic raises a false alarm at k=42.

Figure 10: Dark solid curve is the correlated statistic of
links (6,0) and (3,1). The other dotted curves represent the
correlated statistics of the remaining allowable links.

Not only can we detect the attack (depending on the
new correlation threshold), but also we can diminish the
impact of the false alarm originating at node 6. However
another important conclusion is that without the need to
extract or store header information from the packets
transmitted through the network, we are able to infer
(from the intersection of the two routing tables for the
“winning” correlated statistic of the links (6,0) and (3,1))
the only three possible targets: Namely nodes 0, 1 and 14.

A simple marginal constant reduction in the delay

detection such as that obtained with ,d m
kg vs. ,d m

kS can

provide significant help when we correlate the statistics
because constant gains will get multiplied by the number
of nodes participating in the detection reducing
exponentially the detection delay.

CONCLUSIONS

In this paper we have investigated the problem of
detecting anomalous behavior and distributed attacks in a
network. We investigated detection of spreading of active
code based on the spatio-temporal pattern variations in the
flows of a set of nodes. We also investigated detection of
distributed denial of service attacks. We have formulated
these problems as distributed change detection problems
on a graph. We described several algorithms and their
performance.

Future work includes: identification of the most
promising models to use for the network and for the data
generation mechanisms for the monitoring data; learning
either the parameters of the models assumed for normal or
abnormal data generation, or learning the corresponding
data pattern; more detailed analysis of the distributed
“quickest detection” on graphs; analysis of the trade-off
between correct detection and/or classification and false
alarms; investigation of these problems in the context of
mobile wireless networks.

ACKNOWLEDGMENTS

This material is based upon work supported by the
U.S. Army Research Office under Award No. DAAD19-
01-1-0494 to the University of Maryland College Park.

REFERENCES

Albert, R. and Barabasi A.-L. “Statistical Mechanics of

Complex Networks,” Reviews of Modern
Physics,pp. 47-97, January 2002.

Basseville, M. and Nikiforov I.V. Detection of Abrupt
Changes: Theory and Application, Englewood Cliffs,
NJ: Prentice Hall, 1993.

Blâzek, R.B., Kim H. Rozovskii B. and Tartakovsky A.
“A novel approach to detection of denial-of-service
attacks via adaptive sequential and batch-sequential
change-point detection methods,” IEEE Systems,
Man and Cybernetics Information Assurance
Workshop, June 2001.

Bohacek, S., “Optimal Filtering for Denial of Service
Mitigation,” IEEE Conf. on Dec. and Control, 2002.

Houle K.J and Weaver, G.M. “Trends in Denial of
Service Attack Technology” CERT Coordination
Center v1.0 October 2001.

Shiryaev, A.N., Optimal Stopping Rules, Springer, 1978.
Staniford S., Paxson V. and Weaver N. “How to 0wn the

Internet in your Spare Time,” Proceedings of the 11th
USENIX Security Symposium (Security ’02) 2002.

Wang, H. Zhang D. and Shin K.G. “Detecting SYN
Flooding Attacks,” Proceedings of INFOCOM 2002,
New York City, New York, June,2002.

